Recap Set ADT

Counter ADT

Assorted Problems

COMP2521 24T3 Applications of Hash Tables

Sushmita Ruj cs2521@cse.unsw.edu.au

set adt counter adt assorted problems

▲□▶▲@▶▲≣▶▲≣▶ = 差 = のへで

Recap

Set ADT

Counter ADT

Assorted Problems A hash table is a data structure that stores key-value pairs, where keys are unique

Operations:

Insert: Insert or replace key-value pair **Lookup:** Given a key, get its associated value **Delete:** Given a key, delete its key-value pair

Performance:

Average-case: O(1)Assuming good hash function and appropriate resizing

Worst-case: O(n)

If all keys hash to the same value (extremely unlikely with good hash)

Applications of Hash Tables

Recap

Set ADT

Counter ADT

Assorted Problems

Hash tables are used everywhere due to their efficiency

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Recap

Set ADT

Counter ADT

Assorted Problems

Set

A set is an unordered collection of distinct elements

Operations:

Insert: Insert an item into the set Membership: Check if an item is in the set Delete: Delete an item from the set

▲□▶▲□▶▲三▶▲三▶ ○ ● ○ ● ●

Set ADT Interface

Recap

Set ADT

Counter ADT

Assorted Problems

```
/** Creates a new empty set */
Set SetNew(void);
```

```
/** Free memory used by set */
void SetFree(Set set);
```

```
/** Inserts an item into the set */
void SetInsert(Set set, int item);
```

```
/** Checks if an item is in the set */
bool SetContains(Set set, int item);
```

```
/** Deletes an item from the set */
void SetDelete(Set set, int item);
```

```
/** Returns the size of the set */
int SetSize(Set set);
```

```
/** Displays the set */
void SetShow(Set set);
```

Recap

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Ordered linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table	?	?	?

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q ()

COMP2521 24T3

Recap

Set ADT

Counter ADT

Assorted Problems How to implement the Set ADT using a hash table?

Insert

Insert item into the hash table as a key Can use anything as the value

Contains

Check if the item exists in the hash table

Delete

Delete the item from the hash table

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Recap

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Ordered linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table*	O(1)	O(1)	O(1)

* average costs

Set ADT

Counter ADT

Assorted Problems

Counter

A counter is a collection of items where each distinct item has a count

Operations

Add: Add one to the count of an item Get: Get the count of an item

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

COMP2521 24T3

Recap

Set ADT

Counter ADT

Assorted Problems How to implement the Counter ADT using a hash table?

Use hash table to map items to their counts

Add

Look up item's count in the hash table Then re-insert the item into the hash table with count increased by 1

Get

Look up item's count in the hash table

Recap

Set ADT

Counter ADT

Assorted Problems

Two sum Odd occurrin Anagram

Hash tables are often used as sets or counters to solve problems efficiently

Examples:

Two sum Odd occurring elements Anagram

▲□▶▲□▶▲三▶▲三▶ ● □ ● ●

Set ADT

Counter ADT

Assorted Problems

Two sum Odd occurrin

Problem:

Given an array of integers and a target sum *S*, determine whether the array contains two integers that sum to *S*.

Examples:

Consider the array A = [12, 6, 3, 3, 7, 8]

twoSum $(A, 13) \Rightarrow$ true twoSum $(A, 16) \Rightarrow$ false twoSum $(A, 3) \Rightarrow$ false twoSum $(A, 6) \Rightarrow$ true Two Sum

Odd Occurring Elements

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Problem:

Given an array of integers, return the number of distinct integers that occur an odd number of times.

Examples:

 $\begin{aligned} \mathsf{oddOccurring}([4,3,4,8,8,4]) \Rightarrow 2\\ \mathsf{oddOccurring}([7,2,1,5,6,9]) \Rightarrow 6\\ \mathsf{oddOccurring}([1,1,3,3,7,7]) \Rightarrow 0 \end{aligned}$

COMP2521 24T3

Recap Set ADT

Counter ADT

Assorted Problems Two sum Odd occurring

Anagram

Anagram

Problem:

Given two strings *s* and *t*, determine whether they are anagrams.

Two strings are anagrams if they contain the same amount of each character.

Examples:

anagram("abcde", "edcba") ⇒ true
anagram("abcde", "fdcba") ⇒ false
anagram("abcde", "abcdef") ⇒ false
anagram("aaabb", "ababa") ⇒ true
anagram("aaabb", "babab") ⇒ false

Recap Set ADT

Counter ADT

Assorted Problems Two sum Odd occurring Anagram

Feedback

COMP2521 24T3

Recap

Set ADT

Counter ADT

Assorted Problems Two sum Odd occurring

Anagram

https://forms.office.com/r/zEqxUXvmLR

シック 単 エル・ボット 中国・エート